r UM2618
,l life.augmented

User manual

Software development kit (SDK) for ST25RU3993 based Rain RFID readers

Introduction

The STSW-ST25RU-SDK is a comprehensive middleware software stack written in ANSI C, to build RAIN® RFID enabled
applications for reader devices based on ST25RU3993. This document describes the structure and organization of the SDK and
provides information about the usage of the ST UHF library API.

This SDK includes number of application source code examples that illustrate the usage of the ST UHF library (STUHFL)

for Windows® and Linux® platforms. The complete software stack is ANSI C and POSIX complaint and enables fast and
straightforward porting to other operating systems and/or toolchains.

Software Development Kit (SDK) Evaluation Hardware
STSW-5T25RU-SDK ST25RU3993-HPEV

_

UHF application
0S5 (Windows, Linux)
MCU native

Board Firmware
of ST25RU3883-HPEV

ST25RU UHF library
STUHFL

UM2618 - Rev 5 - October 2021 www.st.com

For further information contact your local STMicroelectronics sales office.



‘W UM2618

System overview

1 System overview

The SDK design is a classic middleware software stack running on a host system. It provides a simple software
API to abstract low-level communication details. As shown in the simplified overview the system comprises of two
hardware entities running the dedicated software components.

Figure 1. System overview

k7

o

b =

2

_g STUHFL EVAL API
1<)

E ST25RU3993 firmware
S

©

(<

@

Q

s

[}

a ST25RU3993

The hardware entity at the botttom (device/reader module) runs the firmware with low-level driver implementation
to operate the ST25RU3993 reader IC and various UHF RFID protocols. The firmware also includes a software
interface to the STUHFL EVAL API library.

The hardware entity on top (host side) runs the STUHFL and abstracts the low-level functionality. It also provides
a dedicated software API for UHF applications.

The STUHF runs on host systems with an operating system as well as on embedded systems (with OS or native),
with limited resources. In such a case the system would run on the reader module only.

1.1 General information
The software described in this document supports Arm®-based device.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

UM2618 - Rev 5 page 2/27



‘W UM2618

Features

1.2 Features
. Comprehensive middleware stack to create RAIN® RFID enabled applications for reader devices based on
ST25RU3993
. Identical (mirrored) host and device library API

. Written in pure ANSI C99
. POSIX complaint
. Straightforward portability across different platforms (MCU/RTOS/OS)
. Support of main UHF standards
—  EPC UHF Gen2v2 or ISO 18000-63
- GB/T 29768
. Application source code examples available for:
- Windows®(10 or newer)
—  Linux® (Raspberry Pi 3B or newer)
—  Embedded (STM32L4 device)
—  SW-Wrappers for state of the art programming languages: Java, C#, Python

1.3 Hardware requirements

The main purpose of the STUHFL is to simplify the ST25RU3993 low-level hardware driver, and to provide
an easy-to-use software interface. Therefore, the STUHFL operates only with the ST25RU3993-based
demonstration boards listed below and their corresponding firmware:

. ST25RU3993-EVAL

. ST25RU3993-HPEV

It is also possible to port the low-level hardware driver to other devices hosting a suitable MCU to drive the
firmware.

1.4 Building environment
All host side software components and application source code examples are generated using Microsoft Visual
Studio 2017 (VS2017). The SDK contains a VS2017 solution hosting projects for two different platforms. One
project is for Win32 platforms suitable for generating code running on Windows® 10 platforms (and newer). The
second project is for Arm platforms running on Linux® devices. The Arm project provides the possibility to do
remote compilation with VS2017 given the Arm device ia accessible within the same network. To be tool-chain
independent make files for all mentioned projects are available as well.

Note: The STUHFL project for Arm and the corresponding example project requires a Raspberry Pi 3B(or newer)
hardware for development. Refer to the corresponding project solution files to have more details about project
configuration.

UM2618 - Rev 5 page 3/27



‘,_l UM2618

Software architecture

2 Software architecture

The STUHFL follows a classic stacked middleware software design and consists of sofware components that run
on a reader device/module and on a host system as the default use case.

The complete STUHFL is ANSI-C and POSIX compliant, with the benefit of easy porting to other operating
systems and platforms.

The STUHFL in its current implementation supports the common UHF RFID standards.

Application source code examples are available for Windows® and Linux®, to be used with corresponding library
modules.

2.1 STUHFL API

The accessible STUHFL API allows the user to build UHF RFID (e.g. RAIN RFID) applications on ST25RU3993
reader devices. The three stacked software layers listed below represent the complete accessible STUHFL API.

. Activity

. Session

. Device

In this arrangement abstraction and complexity increases starting device layer moving towards the activity layer.
The purpose of the 'Device' layer is to abstract the hardware specific functionality, such as ST25RU3993 register
access. The 'Session' layer uses the 'Device' layer to implement UHF RFID protocols such as the EPC Gen2V2

or GB/T 29768. The 'Activity' layer uses the 'Device' and 'Session' layers to abstract functionality as for example
automated tag inventory running in the background.

Table 1. Main layers

Activity ' Background functionality (e.g. tag inventory) via the build-in "Inventory Runner"
Session | Implementation of various UHF RFID standards or protocols like EPC Gen2V2 or GB/T 2968

Device | Abstraction of hardware specific functionalities like ST25RU3993 register access

2.2 STUHFL EVAL API

On the device/reader module side the STUHFL EVAL API provides a basic software interface to ST25RU3993
low-level drivers. The STUHFL builds on top of this low-level interface and derives its ST25RU3993 specific
functionality. Applications where no host system is involved can directly call the low-level STUHFL EVAL API on
reader/device side.

Note: Applications not using the STUHFL middleware stack can attach to this interface.

2.3 STUHFL wrappers
On top of the STUHFL host interface, several software wrappers are available for fast prototyping.
. Java/C#/Python
. ST EVAL API
Java, C# and Python are state of the art programming languages and enable software developers to implement

fast and efficiently a multitude of UHF RFID application. Additionally, it is also possible to implement custom
interface wrappers similar to the ST EVAL API wrapper.

Note: Software wrappers for other languages can easily be implemented when these programming languages support
calling native C code.

UM2618 - Rev 5 page 4/27



‘,_l UM2618

Not exposed layers

The STUHFL EVAL API wrapper (host side) is a complete replica of the STUHFL EVAL API on the device

side. This allows users to start developing firmware applications on host systems and finish their task by porting
the firmware to the device/reader side. The advantage of this approach is that the host side offers debuggers,
advanced code tracers and many other host system development features. These host tools speed-up and
simplify code development. When the firmware code development on the host side is completed, simply "copy
and paste" the firmware application code to the device/reader side. No additional source code modifications are
required to run the firmware on the MCU.

Note: The STUHFL EVAL API wrapper fully emulates the STUHFL EVAL API, exactly as it is available on the device
side.
24 Not exposed layers

Underneath the accessible STUHFL API, several other layers collaborate on the host side with their counterparts
on the device side. This layer stack is taking care of the data transfer between the host and the reader device.

. Dispatcher

. Protocol

. Bus

These stacked layers depend only on their direct counterparts. The main purpose of the 'Dispatcher’ layer is to
bundle the STUHFL API function calls into one single module and to forward it to the protocol layer.

The 'Protocol' layer encodes the abstracted function calls into transferable TLV formatd data chunks forwarding
them to the 'Bus' layer.

Finally, the 'Bus' layer sends the data chunks over the physical interface and receives them on the device/reader
module side. For the data transfer in the opposite direction from device/reader side to the host side, the protocol
and the dispatcher layers do their task in the reverse order.

Table 2. Not exposed layers

Dispatcher | Concentrates or deconcentrates API function calls

Encodes and decodes dispatched data into TLV formatted data chunks ready for transfer between host and

Protocol :
device

Bus Platform depended transfer layer handling data exchange

241 Support and helper

Support and helper layers provide relevant functionality and make their interface available to almost all other
modules.

Table 3. Helper layer

[ T EmEw ]

TLV Tag-Length-Value encoding and decoding support
Logging Logging helper

UM2618 - Rev 5 page 5/27



UM2618

Not exposed layers

3

Figure 2. ST UHFL library system architecture

STUHFL wrappers

STUHFL API

_ >

Inventory runner

_ >

Gen2Vv2 GBI/T 29768

Host side

Device layer >

ST25RU3993- ST25RU3993-
EVAL HPEV

e STUHFL_F_Connect(...)
e STUHFL_F_SetParam(...)
e STUHFL_F_GetParam(...)
e STUHFL_F_Reboot(...)

. ...

Dispatcher
Protocol layer

{

Bus layer >
UART ‘ ‘ ‘

4% -
Bus layer ’—»

Support and helpers

Logging

TLV

Protocol layer
Dispatcher

STUHFL EVAL API

Device/reader module side

Platform dependent drivers

UM2618 - Rev 5 page 6/27



m UM2618

Host side usage

25 Host side usage

The functionality that is avalaible by the STUHFL API enables the host-side development of UHF RFID reader

applications based on the ST25RU3993 reader IC. Host systems running Windows® or Linux® operating systems
are supported by default. As the whole library is ANSI-C and POSIX compliant, it also easily builds for other
POSIX compliant platforms.

The following figure shows an example of host side usage.

Figure 3. STUHFL usage overview

UHF application

o

Host
e.g. RPi

Device drivers

ST25RU3993
device firmware

ST25RU3993 drivers

Device/reader module
e.g. STM32L476 based EVAL board

ST25RU3993

UM2618 - Rev 5 page 7/27



m UM2618

Device side usage

2.6 Device side usage

The available STUHFL EVAL API provides an abstract interface to the complete UHF RFID reader functionality
provided by the ST25RU3993 reader IC avoiding the burden of manually handling low-level register access.
Therefore, this interface is host device-independent and enables the implementation of de facto any abstract UHF
RFID reader application.

The following figure shows an example of device side usage.

Figure 4. ST UHF library EVAL API device side usage

UHF application

STUHFL EVAL API

Device drivers

ST25RU3993 drivers

ST25RU3993 module based firmware

Device/reader module
e.g. STM32L476 based EVAL board

ST25RU3993

UM2618 - Rev 5 page 8/27



‘W UM2618

Source code

3 Source code

The complete source code (including application source code examples for Windows® and Linux®) is available for
download from www.st.com.

3.1 Main SDK folders and file structure
The package comes as zip file, with the following directory structure.
Figure 5. Directory structure

w 5T25RU3993 STUHFL 5DK package v-¥-X-X

» Applications

Documents
% Firrmware
% Middleware

Table 4. Directory description

Demonstration application(s) for Windows® and Linux® showcasing the usage of

Application the SDK
Documents Release notes, help files and “Software Package License Agreement”
Firmware ST25RU3993 based firmware supporting GS1 EPC Gen2v2 air interface and GB/T
29768-2013 protocols
Middleware Native C ST-UHF-Library for host and device specific application development with
ST25RU3993 Reader IC based demonstration board
3141 "Applications" folder

THe "Applications" folder contains all demonstration applications for Windows® and Linux® showcasing the usage
of SDK.

Figure 6. "Application" folder structure

W 5T25RU3993 STUHFL SDK package v-K-X-X
w Applications
STUHFL_demo
STUHFL_demo_wrapper
Docurmnents

Firrmware

Middleware

UM2618 - Rev 5 page 9/27


http://www.st.com

‘,_l UM2618

Main SDK folders and file structure

Table 5. "Application" folder description

I T

STUHFL_demo Demonstration application(s) for Windows® and Linux® showcasing the usage of the SDK

Demonstartion application demonstrating the usage of the SDK with the C#, Python or Java

STUHFL_demo_wrapper
wrappers.

3.1.2 "Documents"” folder

The "Documents" folder contains the “Release notes”, help files and “Software Package License Agreement” for
all components.

Figure 7. "Documents” folder structure

v 5T23RU3993 STUHFL 5DK package v-X-X-X
Applications
Documents
Firmware

Middleware

For easier navigation the folder also contains the file README.htm with an overview of all documents and links to
access them.

313 "Firmware" folder
The "Firmware" folder contains the ST25RU3993 based FW supporting GS1 EPC Gen2v2 Air Interface & GB/T

29768-2013 protocols.
Figure 8. "Firmware" folder strucuture
v 5T25RU3993 STUHFL 5DK package v-X-X-X
Applications
Documents
A Firmware

Eval
Inc
Src

Middleware

Table 6. "Firmware" folder description

Ciona | i

EVAL ST25RU3993-EVAL and ST25RU3993-HPEYV board dependent source code files
Inc  Implementation of header files for low level drivers and protocol functionality independent of onboard MCU.

Src | Implementation of source files for low level drivers and protocol functionality independent of onboard MCU.

UM2618 - Rev 5 page 10/27



m UM2618

Build instruction STUHFL middleware only

3.1.4 "Middleware™ folder

The "Middleware" folder contains the Native C ST-UHF-Library for host and device specific application
development with ST25RU3993 Reader IC based demonstration board. Also, part of the middleware folder are
the wrapper implementations for C#, Python and Java based on the native C library.

Figure 9. "Middleware" folder structure
v 5T25RU3993 STUHFL 5DK package w-X-X-X
Applications
Documents
Firrnware
v Middleware
clib

wrapper

Table 7. "Middleware" folder description

E

clib Source code of native C ST-UHF-Library for host and device specific application development with ST25RU3993
Reader IC based demonstration board ST25RU3993-EVAL and ST25RU3993-HPEV.

wrapper Software wrappers source code for STUHFL API usage with C#, Python and Java.

3.2 Build instruction STUHFL middleware only

The VS2017 solution to build a Win32 dynamic link library or Arm® based shared object library is located at ./
Middleware/clib/STUHFL.sIn. For usage without Visual Studio a makefile can be found at the same location.

Note: For software development based on STUHFL a solution contains the STUHFL project itself and an example
application source code to demostrate the usage of library is also available. This can be found at ./Applications/
STUHFL_demo/STUHFL_demo.sin. A variant of the solution available for RPi can be found at the same folder
location. These VS2017 solutions allows user to build and debug the application source code and the STUHFL
middleware at once. For usage without Visual Studio a makefile can be found at the same location.

UM2618 - Rev 5 page 11/27



‘W UM2618

Build instruction STUHFL middleware wrapper

3.21 VS2017 project used in Windows® for STUHFL
The user must execute the following steps:
1. Open the VS2017 solution .\Middleware\clib\STUHFL.sIn
2. Right-click on the STUHFL project and click rebuild

Note: This generates a Windows® DLL that can be used to communicate to ST25RU3993 Reader IC based
demonstration boards on a RPi.

3.2.2 VS2017 project used in Linux® for STUHFL
The user must execute the following steps:
1. Open the VS2017 solution .\Middleware\clib\STUHFL.sIn
2. Add the IP address of the RPi in the Tools/Options/Cross platform options
3. Inthe STUHFL (Linux®) project properties set this as the remote machine
4. Right-click on the STUHFL(Linux®) project and click rebuild

Note: This generates a Linux® complete shared object that can be used to communicate to ST25RU3993 Reader IC
based demonstrantion boards on a RPI.

3.23 "makefile" usage for STUHFL
The user canrun : make -C ./STUHFL/Middleware/clib/makefile

3.3 Build instruction STUHFL middleware wrapper

3.31 C# for STUHFL
The user must execute the following steps:
. Open .../Middleware/wrapper/cs/STUHFL_cs.sIn
—  Select "Solution Configuration" (Debug/Release)
—  Select "Solution Platform" (x86/x64)
. Rebuild full solution (Build -> "Rebuild Solution")
—  STUHFL library is generated at .../Middleware/wrapper/cs/<Configuration>/<Platform>/STUHFL.dII

—  C# wrapper library is generated at .../Middleware/wrapper/cs/STUHFL_cs/bin/<Configuration>/
STUHFL_cs.dll

3.3.2 Python for STUHFL
The user must execute the following steps:
. Open .../Middleware/wrapper/python/STUHFL_py.sin
—  Select "Solution Configuration" (Debug/Release)
—  Select "Solution Platform" (x86/x64)
. Rebuild full solution (Build -> "Rebuild Solution")
—  STUHFL library is generated at .../Middleware/wrapper/python/<Configuration>/<Platform>/STUHFL.dII

Note: NOTE: Select appropriate libPath variable in .../Middleware/wrapper/python/STUHFL_native.py (lines 32 to 35)
in relation with selected <Configuration> & <Platform>

UM2618 - Rev 5 page 12/27



‘W UM2618

Build instruction STUHFL middleware wrapper

3.33 Java (Windows®) for STUHFL
The user must execute the following steps:
. Build STUHFL.dIl and JNISTUHFL.dII (optional, only needed when modifications are applied)

—  Open .../Middleware/wrapper/java/jni/JNISTUHFL/JNISTUHFL.sIn with Microsoft® Visual Studio
Professional 2017 or newer.

- Check "Include Directories" to match local JDK installation for the JNISTUHFL solution

1. Open "Properties” of the JNISTUHFL solution and check "Configuration Properties - VC++
Directories - Include Directories"

2. Edit, if needed, the path to JDK includes to match local installation and prefered Java version
. Select "Solution Configuration" (Debug/Release)
. Select "Solution Platform" (x86/x64)
. Rebuild all

Note: NOTE: The generated DLL’s can be found at .../Middleware/wrapper/java/jni/JNISTUHFL/<Configuration>/
<platform>/

Command line:

> cd .../Middleware/wrapper/java/jni/JINISTUHFL
> MSBuild.exe JNISTUHFL.sln /verbosity:m /property:Configuration=Debug /property:Platform=x64

. Build STUHFL.jar (optional, only needed when modifications are applied)
—  Compile the java sources from .../Middleware/wrapper/java/src and package it to a jar archive

Command line:

> cd .../Middleware/wrapper/java/src/

> javac -verbose stuhfl/*.java

> javac -verbose stuhflBridge/*.java

> jar cvf stuhfl.jar stuhfl stuhflBridge

3.3.4 Java (Linux®) for STUHFL
The user must execute the following steps:
. Build libSTUHFL.so and libJNISTUHFL.so

—  Run the makefile in the JNISTUHFL directory to build both shared libraries. By default the libraries are
build as release.

Note: The generated libJNISTUHFL shared object depends on the libSTUHFL and is generated first.
libSTUHFL.so can be found in .../Middleware/clib/STUHFL/bin/ARM/<target>
libJNISTUHFL.so can be found in .../Middleware/wrapper/java/jni/lJNISTUHFL/JNISTUHFL/bin/ARM/<target>
Note: The make file depends on the system environment variable JAVA_HOME with the location to the JDK
installation.
Command line:

> cd .../Middleware/wrapper/java/jni/JINISTUHFL
> make

. Build STUHFL jar (optional, only needed when modifications are applied)
—  Compile the java sources from .../Middleware/wrapper/java/src and package it to a jar archive
Command line:
> cd .../Middleware/wrapper/java/src/
> javac -verbose stuhfl/*.java

> javac -verbose stuhflBridge/*.java
> jar cvf stuhfl.jar stuhfl stuhflBridge

UM2618 - Rev 5 page 13/27



‘W UM2618

Build instruction STUHFL_demo applications

34 Build instruction STUHFL_demo applications

3.41 VS2017 project used in Windows® for STUHFL_demo
The user must execute the following steps:
. Upload firmware on board
. Open the VS2017 solution \Applications\STUHFL_demo\STUHFL_demo.sIn
. Rebuild solution
. Start debugging

Note: The STUHFL_demo tests at startup that the version information of the board and the STUHFL middleware is
exactly the same. In case of a version mismatch the demonstartion application terminates.

3.4.2 VS2017 project used in Linux® for STUHFL_demo
The user must execute the following steps:
. Upload FW on board
. Open the VS2017 solution \Applications\STUHFL_demo\STUHFL_demo_rpi.sin
. Add the IP address of the RPi in the Tools-Options-CrossPlatform options
. In the STUHFL and STUHFL demonstartion project properties set this IP as remote machine

. Update the communication port location (default: /dev/ttyUSBO0) to where the ST25RU3993-HPEYV board is
connected to on the RPI.

—  Check STUHFL_demo.c COM_PORT define
. Rebuild solution
. Start debugging

Note: The STUHFL_demo application tests at startup the version information of the board and the STUHFL
middleware. Both must have the same version. In case of a version mismatch the demonstration application
terminates.

343 "makefile" usage for STUHFL_demo

The user must execute the following steps:
. Upload firmware to the reader board

. Ensure <linuxmachine>:./STUHFL/bin/ARM/Release/libSTUHFL.so has been generated (Middleware Linux®
shared object generation)

. Copy \Applications\STUHFL_demo\STUHFL_demo\* to <linuxmachine>:./STUHFL_demo/Applications/
STUHFL_demo/STUHFL_demo

. Copy \Applications\STUHFL_demo\makefile to <linuxmachine>:.
. On a Linux® machine, make -C ./makefile

Note: The STUHFL_demo application tests at startup the version information of the reader board and the STUHFL
middleware. Both must have the same version. In case of a version mismatch the demonstration application
terminates.

Note: This generates the executable .../STUHFL_demo/bin/ARM/Release/STUHFL_demo.out

3.5 Build instruction STUHFL_demo wrapper applications

3.51 C# for STUHFL_demo

The user must execute the following steps:
. Upload firmware to the reader board

. Open the VS2017 solution .../Applications/STUHFL_demo_wrapper/STUHFL_demo_cs/
STUHFL_demo_cs.sIn

. Rebuild solution
. Run or debug the demonstration

UM2618 - Rev 5 page 14/27



‘W UM2618

Build instruction STUHFL_demo wrapper applications

3.5.2 Python for STUHFL_demo
The user must execute the following steps:
. Upload firmware on board

. Open .../Applications/STUHFL_demo_wrapper/STUHFL_demo_py/STUHFL_demo_py/STUHFL_demo.py in
the Python IDE (i.e. PyCharm)

. Run or debug the demonstration

3.53 Java (Windows®) for STUHFL_demo
The user must execute the following steps:
. Upload firmware on board
. Compile .../Applications/STUHFL_demo_wrapper/STUHFL_demo_j/src/demo_j/Program.java
. Run or debug the demonstration

Note: The wrapper libraries STUHFL.dIl, INISTUHFL.dIl and STUHFL.jar must be accessible with java library path. In
the command line example below the binaries are located in ./lib/Debug/x64/

Note: The STUHFL jar file must be added to class path. In the command line example below the file is located in ./lib/
Debug/x64/
Note: The demonstration program expects to have only one transponder present at the antenna.

Command line:

> cd .../Applications/STUHFL demo wrapper/STUHFL demo Jj/

> javac -classpath lib/Debug/x64/stuhfl.jar src/demo_j/Program.java

> java -classpath lib/Debug/x64/stuhfl.jar;src -Djava.library.path=1ib/Debug/x64/ demo j/
Program

3.5.4 Java (Linux®) for STUHFL_demo
The user must execute the following steps:
. Upload firmware to the reader board
. Compile .../Applications/STUHFL_demo_wrapper/STUHFL_demo_j/src/demo_j/Program.java
. Run or debug the demonstration
Note: The shared libraries libSTUHFL.so, libJNISTUHFL.so and STUHFL jar must be accessible with the java library
path.

In the command line example below the binaries are located in /usr/local/lib/stuhfl and the the
LD _LIBRARY_PATH is extended by this directory -> export LD_LIBRARY _PATH=$LD_ LIBRARY_PATH.:/usr/
local/lib/stuhfl

Note: The STUHFL jar file must be added to the classpath. In the command line example below the file is located
in ./usr/local/lib/stuhfl

Note: The demonstration program expects to have only one transponder present at the antenna.
Command line:

> cd .../Applications/STUHFL demo wrapper/STUHFL demo j/

> javac -classpath /usr/local/lib/stuhfl/stuhfl.jar src/demo Jj/Program.java

> java -classpath /usr/local/lib/stuhfl/stuhfl.jar:src -Djava.library.path=/usr/local/lib/
stuhfl/ demo j/Program

UM2618 - Rev 5 page 15/27



‘,_l UM2618

Software interface description

4 Software interface description

For a detailed API description check the available documentation, which is part of the SDK and is available in
compiled HTML file format (chm). A brief overview of the API functionality for the various modules is given in the
following sections.

Note: For detailed information, refer to the file “Documents/Middleware-STUHFL.chm”
4.1 Device layer
411 Connections

The table below gives an overview of the connectivity functions.

Table 8. STUHFL connection functionality

T

STUHFL_F_Connect Connect to a device via STUHFL
STUHFL_F_Disconnect Disconnect from current connected device via STUHFL
STUHFL_F_GetCtx Get device context of current attached device
STUHFL_F_Reset Reset current attached device
4.1.2 Parameter access

The table below gives an overview of the parameter access functions.

Table 9. STUHFL parameter access functionality

STUHFL_F_SetParam Generic set parameter function to set value of configuration
STUHFL_F_GetParam Generic get parameter function to get value of configuration
STUHFL_F_GetParaminfo Get parameter information
STUHFL_F_SetMultipleParams Set list of multiple parameters
STUHFL_F_GetMultipleParams Get list of multiple parameters
41.3 Data exchange

The table below gives an overview of the data exchange functions.

Table 10. STUHFL data exchange functionality

T R

STUHFL_F_SendCmd Send command to device
STUHFL_F_ReceiveCmdData Receive command to device
STUHFL_F_ExecuteCmd Send and receive combination in one call
STUHFL_F_GetRawData Receive raw data from device

UM2618 - Rev 5 page 16/27



‘,_l UM2618

Session layer

414 Generic maintenance
The table below gives an overview of the generic maintenance functions.

Table 11. STUHFL maintenance functionality

STUHFL_F_GetVersion Get device version information
STUHFL_F_Getlinfo Get device information
STUHFL_F_Upgrade Firmware upgrade
STUHFL_F_EnterBootloader Reboot and enter bootloader
STUHFL_F_Reboot Reboot FW
4.2 Session layer
421 Gen2V2 of STUHFL

The table below gives an overview of the Gen2V2 functions.

Table 12. STUHFL Gen2V2 functionality

o ion T e

STUHFL_F_Gen2_Inventory Gen2 Inventory depending on the current inventory and gen2 configuration
STUHFL_F_Gen2_Select Gen2 Select command to select or filter Gen2 transponders
STUHFL_F_Gen2_Read Gen2 Read command to read from the Gen2 transponders
STUHFL_F_Gen2_Write Gen2 Write command to write data to Gen2 transponders
STUHFL_F_Gen2_Lock Gen2 Lock command to lock Gen2 transponders

STUHFL_F_Gen2_Kill Gen2 Kill command to kill Gen2 transponders.
STUHFL_F_Gen2_GenericCmd Generic Gen2 bit exchange

STUHFL_F_Gen2_QueryMeasureRssi | RSSI measurement during Gen2 Query command

4.2.2 GBI/T 29768 of STUHFL
The table below gives an overview of the GB/T 29768 functions.

Table 13. STUHFL GB/T 29768 functionality

T

STUHFL_F_Gb29768_Inventory A GB/T 29768 Inventory depending on the current inventory and GB/T 29768 configuration
STUHFL_F_Gb29768_Sort GB/T 29768 Sort command to select or filter GB/T 29768 transponders
STUHFL_F_Gb29768_Read GB/T 29768 Read command to read from the GB/T 29768 transponders
STUHFL_F_Gb29768_Write GB/T 29768 Write command to write data to GB/T 29768 transponders
STUHFL_F_Gb29768_Lock GB/T 29768 Lock command to lock GB/T 29768 transponders
STUHFL_F_Gb29768_Kill GB/T 29768 Kill command to kill GB/T 29768 transponders.
STUHFL_F_Gb29768 Erase  GB/T 29768 Erase command to erase GB/T 29768 transponders.

UM2618 - Rev 5 page 17/27



‘,_l UM2618

Activity layer

4.3 Activity layer

431 Actions
The table below gives an overview of the action functions.

Table 14. STUHFL action functionality

I R

STUHFL_F_Start Start actions
STUHFL_F_Stop Stop action
4.4 STUHFL EVAL API wrapper
441 Generic
The table below gives an overview of the generic functions to access the evaluation board and retrieve basic
information

Table 15. STUHFL EVAL API generic functionality

I .

Connect Connect to the ST25RU3993 based evaluation board
Disconnect Disconnect from the current board
Get_BoardVersion Read the board software and hardware information
Get_BoardInfo Get human readable software and hardware device information
Reboot Reboot evaluation board
EnterBootloader Shutdown FW and enter STM32 ROM bootloader of evaluation board

UM2618 - Rev 5 page 18/27



‘,_l UM2618

STUHFL EVAL API wrapper

44.2 Configuration
The table below gives an overview of the configuration functions.

Table 16. STUHFL EVAL API configuration functionality

N T R

SetRegister Writes the ST25RU3993 register content
Set_RegisterMultiple Writes multiple ST25RU3993 registers content at once
GetRegister Reads one ST25RU3993 register content
Get_RegisterMultiple Reads multiple ST25RU3993 registers
Set_RwdCfg Set reader configuration
Get_RwdCfg Get reader configuration
Set_Gen2_RxFilter Set reader Rx Filter configuration for Gen2 config
Get_Gen2_RxFilter Get reader Rx Filter configuration for Gen2 config
Set_Gb29768_RxFilter Set reader Rx Filter configuration for Gb29768 config
Get_Gb29768_RxFilter Get reader Rx Filter configuration for Gb29768 config
Set_Gen2_FilterCalibration Set reader Rx Filter calibration for Gen2
Get_Gen2_FilterCalibration Get reader Rx Filter calibration for Gen2
Set_Gb29768_FilterCalibration Set reader Rx Filter calibration for Gb29768
Get_Gb29768_FilterCalibration Get reader Rx Filter calibration for Gb29768
Set_AntennaPower Set antenna power
Get_AntennaPower Get antenna power
Set_Gen2_Timings Set Gen2 protocols timings
Get_Gen2_Timings Get Gen2 protocols timings
Set_Gen2_ProtocolCfg Set Gen2 protocol configuration
Get_Gen2_ProtocolCfg Get Gen2 protocol configuration
Set_Gb29768_ProtocolCfg Set Gb29768 protocol configuration
Get_Gb29768_ProtocolCfg Get Gb29768 protocol configuration
Set_TxRxCfg Set TxRx configuration
Get_TxRxCfg Get TxRx configuration
Set_PowerAmplifierCfg Set power amplifier configuration
Get_PowerAmplifierCfg Get power amplifier configuration
Set_Gen2_InventoryCfg Set general Gen2 inventory configuration
Get_Gen2_InventoryCfg Get general Gen2 inventory configuration
Set_Gb29768_InventoryCfg Set general Gb29768 inventory configuration
Get_Gb29768_InventoryCfg Get general Gb29768 inventory configuration

UM2618 - Rev 5 page 19/27



‘,_l UM2618

STUHFL EVAL API wrapper

443 Frequency
The table below gives an overview of the frequency configuration functions.

Table 17. STUHFL EVAL API frequency settings functionality

Set_ChannelList Set frequency channel list

Get_ChannellList Get frequency channel list
Set_FreqHop Set frequency hopping time
Get_FreqHop Get frequency hopping time
Set_FreqLBT Set listen before talk configuration
Get_FreqLBT Get listen before talk configuration

Set_FreqContinuousModulation Set continuous modulation configuration
Get_FreqRSSI Get RSSI
Get_FreqReflectedPower Get reflected power

444 Tuning
The table below gives an overview of the tuning functions.

Table 18. STUHFL EVAL API tuning functionality

Set_TuningCaps Set Cin, Clen and Cout of current selected channel list item.
Get_TuningCaps Get Cin, Clen and Cout of current selected channel list item.
4.4.5 Gen2V2

The tables below gives an overview of the Gen2V2 functions.

Table 19. STUHFL EVAL API Gen2V2 functionality

T T R

Gen2_Inventory Gen2 Inventory depending on the current inventory and gen2 configuration
Gen2_Select Gen2 Select command to select or filter Gen2 transponders
Gen2_Read Gen2 Read command to read from the Gen2 transponders
Gen2_Write Gen2 Write command to write data to Gen2 transponders

Gen2_BlockWrite Gen2 Block-Write command to write data to Gen2 transponders
Gen2_Lock Gen2 Lock command to lock Gen2 transponders

Gen2_Kill Gen2 Kill command to kill Gen2 transponders.
Gen2_GenericCmd Generic Gen2 bit exchange
Gen2_QueryMeasureRssi RSSI measurement during Gen2 Query command

UM2618 - Rev 5 page 20/27



‘,_l UM2618

STUHFL EVAL API wrapper

4.4.6 GBI/T 29768
The table below gives an overview of the GB/T 29768 functions.

Table 20. STUHFL EVAL API GB/T 29768 functionality

I T S

Gb29768_Inventory  GB/T 29768 Inventory depending on the current inventory and GB/T 29768 configuration
Gb29768_Sort GB/T 29768 Sort command to select or filter GB/T 29768 transponders
Gb29768_Read GB/T 29768 Read command to read from the GB/T 29768 transponders
Gb29768_Write GB/T 29768 Write command to write data to GB/T 29768 transponders
Gb29768_Lock GB/T 29768 Lock command to lock GB/T 29768 transponders
Gb29768_Kill GB/T 29768 Kill command to kill GB/T 29768 transponders.
Gb29768_Erase GB/T 29768 Erase command to erase GB/T 29768 transponders.

4.4.7 Inventory runner
The table below gives an overview of the inventory runner functions.

Table 21. STUHFL EVAL API inventory runner functionality

I

Inventory_RunnerStart Start inventory runner

Inventory_RunnerStop Stop current inventory runner

UM2618 - Rev 5 page 21/27



m UM2618

Revision history

Table 22. Document revision history

I S

17-Sep-2019 1 Initial release.

Updated document title and Section Introduction.
26-Nov-2019 2

Minor text edits across the whole document.

Updated:

. Section Introduction, Section 1.2 Features, Section 1.3 Hardware
requirements, Section 2.3 STUHFL wrappers

. Figure 2. ST UHFL library system architecture

03-Jun-2020 3 . title of Section 4.2.2 GB/T 29768 of STUHFL and of Section 4.4.6 GB/T
29768

. Table 13. STUHFL GB/T 29768 functionality, Table 20. STUHFL EVAL API GB/T
29768 functionality

Removed Table 1. Hardware requirement

Added Section 4.4.1 Generic

23-Apr-2021 4 Updated Section 2.3 STUHFL wrappers, Section 4.4.2 Configuration,
Section 4.4.3 Frequency, Section 4.4.4 Tuning, Section 4.2.1 Gen2V2 of STUHFL,
Section 4.4.6 GB/T 29768, Section 4.4.7 Inventory runner

Updated:

. Document title

. Section Introduction, Section 1 System overview, Section 1.2 Features,
Section 1.3 Hardware requirements, Section 1.4 Building environment,
05-Oct-2021 5 Section 2 Software architecture, Section 2.1 STUHFL AP,
Section 2.2 STUHFL EVAL API, Section 4.4 STUHFL EVAL API
wrapper, Section 2.4 Not exposed layers, Section 2.5 Host side usage,
Section 2.6 Device side usage, Section 4 Software interface description

. Reworked all Section 3 Source code

UM2618 - Rev 5 page 22/27



m UM2618

Contents

Contents
1 SY S EM OVEIVIEW ..ot ittt i ettt aaa s naa s nana s anaa e naa s 2
1.1 General information . .. ... .. 2
1.2 FeatUreS . . o 3
1.3 Hardware requirements . ... ... ... 3
1.4 Building environment . ... ... e 3
2 Software architecture. .......... ..ottt ittt i i s 4
2.1 STUHRL APl . 4
2.2 STUHFL EVAL AP . e e 4
23 STUHF L WIap IS . o oot e e e e e e e 4
24 NOt eXpoSed layers . . ... . e 5
241 Support and helper . . ... e 5
25 Host side Usage. . . ... .o 7
2.6 Device Side USage. . . . .. .ot 8
BT~ T 11 T o= oo T - 9
3.1 Main SDK folders and file structure. . . ... .. 9
311 "Applications” folder . . . ... ... .. e 9
3.1.2 "Documents” folder . . . . . ... 10
3.1.3 "Firmware" folder . .. ... 10
314 "Middleware" folder. . . . .. ... 11
3.2 Build instruction STUHFL middleware only . ......... ... .. .. 11
3.21 VS2017 project used in Windows® for STUHFL .. ................ ... ........... 12
3.2.2 VS2017 project used in Linux® for STUHFL . .................... ... ...ccoo.... 12
3.2.3 "makefile” usage for STUHFL . ... ... ... . . . 12
3.3 Build instruction STUHFL middleware wrapper. ..., 12
3.31 CHfor STUHFL . . . e 12
3.3.2 Python for STUHFL. . . ... . e e 12
3.33 Java (Windows®) for STUHFL. . ... ...ttt e 13
3.3.4  Java (Linux®) for STUHFL . ... .. o 13
3.4 Build instruction STUHFL_demo applications . . ......... .. ... ... . . ... 14
3.41 VS2017 project used in Windows® for STUHFL _demo . ..................cco.... 14

UM2618 - Rev 5 page 23/27



m UM2618

Contents

3.4.2 VS2017 project used in Linux® for STUHFL_demo. ... ........couiieeen. .. 14

343 "makefile” usage for STUHFL_demo. . .. ... ... . e 14

3.5 Build instruction STUHFL_demo wrapper applications ............. ... ... .. ....... 14
3.5.1 CH#Hfor STUHFL demo .. ... ... . e e e 14

3.5.2 Python for STUHFL_demo . . ... ... e e 15

3.5.3 Java (Windows®) for STUHFL demo ... ......... ..., 15

3.54 Java (Linux®) for STUHFL demo . ... ...ttt 15

4 Software interface description .............. i i it i 16
4.1 DeVviCE layer. . . o 16
411 CONNECHIONS . . . o 16

41.2 Parameter acCess . . . . ... 16

41.3 Dataexchange . . . ... 16

414 Genericmaintenance . . . ... ... 17

4.2 SESSION LAYl . . .o 17
4.21 Gen2V2 of STUHFL . . ... 17

4.2.2 GB/T 29768 of STUHFL . . . ... e e 17

4.3 AChiVIty [ayer. . . 18
4.3.1 ACHONS 18

4.4 STUHFL EVAL AP Wrapper . . oottt e e e e e e e e e e ettt e 18
4.41 GBNEIIC . . oo 18

44.2 Configuration. . . . ... 19

443 FrequUeNCY. . . . 20

444 TUNING. . 20

4.45 BNV 2. . o 20

4.4.6 GB/T 29768 . . . 21

447 INVENTOrY TUNNET . o o o e 21
ReVISioN RiStory . ..... ...t it i 22

UM2618 - Rev 5 page 24/27



m UM2618

List of tables

List of tables

Table 1. Main layers . . .. .o 4
Table 2. Notexposed layers . . . .. ... 5
Table 3. Helperlayer . .. .. 5
Table 4. Directory descCription. . . . . . . .. 9
Table 5. "Application” folder description. . . . . . . . . . 10
Table 6. "Firmware" folder description. . . . . . . ... 10
Table 7. "Middleware" folder description . . . . . . ... . e "
Table 8. STUHFL connection functionality . . . . . . . ... ... 16
Table 9.  STUHFL parameter access functionality . . . . . . .. . .. . 16
Table 10. STUHFL data exchange functionality . . . . .. ... .. . . 16
Table 11.  STUHFL maintenance functionality . . .. ... ... .. . . . e 17
Table 12.  STUHFL Gen2V2 functionality. . . . . . . . . . e 17
Table 13.  STUHFL GB/T 29768 functionality . . . . . . . . .. e e e e 17
Table 14.  STUHFL action functionality . . . . . . . ... 18
Table 15.  STUHFL EVAL API generic functionality . . . . . .. ... e 18
Table 16.  STUHFL EVAL API configuration functionality . . . . . .. ... ... . . . e 19
Table 17.  STUHFL EVAL API frequency settings functionality . .. ... ... ... .. ... .. . . . . . . 20
Table 18.  STUHFL EVAL API tuning functionality . . . . . . . .. ... . 20
Table 19. STUHFL EVAL API Gen2V2 functionality . . . . .. .. .. e e 20
Table 20.  STUHFL EVAL API GB/T 29768 functionality. . . . . . ... .. . e 21
Table 21.  STUHFL EVAL APl inventory runner functionality. . . . . .. ... ... . . . . i 21
Table 22.  Document revision history . . . . . .. 22

UM2618 - Rev 5 page 25/27



m UM2618

List of figures

List of figures

Figure 1. SYSIEM OVEIVIEW. . . . o 2
Figure 2. ST UHFL library system architecture . . . . . . . . .. 6
Figure 3. STUHFL USage OVEIVIEW . . . . . . o e e e e e e e e e 7
Figure 4. ST UHF library EVAL APl device side USage . . . . .. ... . i e e 8
Figure 5. Directory StruCtUre. . . . . . . . 9
Figure 6. "Application" folder structure. . . . . . . . .. e 9
Figure 7. "Documents” folder structure . . . .. . ... .. 10
Figure 8. "Firmware" folder strucuture . . . . . . .. .. e 10
Figure 9. "Middleware" folder structure . . . . . .. .. .. e 11

UM2618 - Rev 5 page 26/27



m UM2618

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics — All rights reserved

UM2618 - Rev 5 page 27/27



http://www.st.com/trademarks

	Introduction
	1 System overview
	1.1 General information
	1.2 Features
	1.3 Hardware requirements
	1.4 Building environment

	2 Software architecture
	2.1 STUHFL API
	2.2 STUHFL EVAL API
	2.3 STUHFL wrappers
	2.4 Not exposed layers
	2.4.1 Support and helper

	2.5 Host side usage
	2.6 Device side usage

	3 Source code
	3.1 Main SDK folders and file structure
	3.1.1 "Applications" folder
	3.1.2 "Documents" folder
	3.1.3 "Firmware" folder
	3.1.4 "Middleware" folder

	3.2 Build instruction STUHFL middleware only
	3.2.1 VS2017 project used in Windows® for STUHFL
	3.2.2 VS2017 project used in Linux® for STUHFL
	3.2.3 "makefile" usage for STUHFL

	3.3 Build instruction STUHFL middleware wrapper
	3.3.1 C# for STUHFL
	3.3.2 Python for STUHFL
	3.3.3 Java (Windows®) for STUHFL
	3.3.4 Java (Linux®) for STUHFL

	3.4 Build instruction STUHFL_demo applications
	3.4.1 VS2017 project used in Windows® for STUHFL_demo
	3.4.2 VS2017 project used in Linux® for STUHFL_demo
	3.4.3 "makefile" usage for STUHFL_demo

	3.5 Build instruction STUHFL_demo wrapper applications
	3.5.1 C# for STUHFL_demo
	3.5.2 Python for STUHFL_demo
	3.5.3 Java (Windows®) for STUHFL_demo
	3.5.4 Java (Linux®) for STUHFL_demo


	4 Software interface description
	4.1 Device layer
	4.1.1 Connections
	4.1.2 Parameter access
	4.1.3 Data exchange
	4.1.4 Generic maintenance

	4.2 Session layer
	4.2.1 Gen2V2 of STUHFL
	4.2.2 GB/T 29768 of STUHFL

	4.3 Activity layer
	4.3.1 Actions

	4.4 STUHFL EVAL API wrapper
	4.4.1 Generic
	4.4.2 Configuration
	4.4.3 Frequency
	4.4.4 Tuning
	4.4.5 Gen2V2
	4.4.6 GB/T 29768 
	4.4.7 Inventory runner


	Revision history

